

chromatograms, whereas Timberlake *et al.*⁹ supposed they were produced by the combined action of acetic and hydrochloric acids (e.g. 1% conc. HCl in HOAc) during concentration of components eluted from the paper. Although these new bands have not been fully identified they behave as if they contain sugars acylated with one or more acetate groups.⁹

EXPERIMENTAL

Plant material. Ripe fruits were harvested in the region of Lago Argentino (Calafate, Santa Cruz Province, Argentina) during February.

Analysis of anthocyanins. Fresh fruits were macerated several times with 0.1% HCl-MeOH, at 0° in the darkness under N₂. The concentrated combined extracts were streaked on Whatman No. 3MM paper and irrigated with BAW allowing to run off the paper for nearly 40 hr. Purification was carried out with 15% HOAc. Preliminary tests for acylation were negative. H₂O₂ oxidation and hydrolysis products were identified by the methods earlier described.

Acknowledgement—Thanks are due to Professor Pedro Cattaneo for supplying the fruits.

⁹ C. F. TIMBERLAKE, P. BRIDLE and S. S. TANCHEV, *Phytochem.* **10**, 165 (1971).

Phytochemistry, 1973, Vol. 12, pp. 220 to 221. Pergamon Press. Printed in England.

BIGNONIACEAE

HYDROQUINONE FROM THE LEAVES OF *JACARANDA MIMOSAEFOLIA*

S. SANKARA SUBRAMANIAN, S. NAGARAJAN and N. SULOCANA

Department of Chemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry-6, India

(Received 10 August 1972. Accepted 7 September 1972)

Key Word Index—*Jacaranda mimosaeifolia*; Bignoniaceae; hydroquinone.

Plant. *Jacaranda mimosaeifolia* D. Don. (Syn. *J. ovalifolia* R. Br.) (voucher specimen No. 6/72 deposited at JIPMER). *Source.* Annamalai University Campus, South India. *Uses.* Medicinal.¹ *Previous work.* Wood,² leaves (flavonoid).³

Present work. Fresh leaves extracted with hot 80% alcohol and the aq. concentrate fractionated into petrol (40–60°), Et₂O and EtOAc. *Petrol fraction.* A triterpenoid, yield, 0.01%, m.p. 257–259° (Me₂CO-MeOH). *Ether fraction.* Hydroquinone, yield, 0.1%, colourless prismatic needles, m.p. 171–172° (MeOH), λ_{max} (EtOH) 225, 294 nm, no shift with AlCl₃ or NaOAc. IR (KBr) bands at 755, 828, 1092, 1195, 1250, 1360, 1460, 1510, 3150 cm⁻¹. NMR: 4 aromatic protons (s, 7.2 ppm), the acetate 6 acetyl protons (s, 2.3 ppm). MS: parent peak at *m/e* 110 (M⁺) and fragmentation at *m/e* 108 (M⁺-2H) and 81

¹ *Wealth of India, Raw Materials*, Vol. V, p. 277, C.S.I.R., New Delhi (1959).

² J. M. WATT and M. G. BREYER-BRANDWIJK, *The Medicinal and Poisonous Plants of Southern and Eastern Africa*, 2nd Edn, p. 142, Livingstone, London (1962).

³ S. S. SUBRAMANIAN, S. NAGARAJAN and N. SULOCANA, *Phytochem.* **11**, 1499 (1972).

(M⁺-CHO); acetate, m.p. 123-124° (EtOH), methyl ether, m.p. 56-58° (MeOH); benzoate, m.p. 196-198° (EtOH); m.m.p., co-PC.

EtOAc fraction. Scutellarin as before.³ *Comment.* This is the first record of the isolation, from the Bignoniaceae, of hydroquinone, the only C₆ phenol of systematic interest, which is common⁴ in the Ericaceae, Rosaceae, Proteaceae and Compositae. The recent isolation of hydroquinone from *Majorana hortensis*,⁵ Labiatae and the present report justifies the two families in the Tubiflorae.

Acknowledgements—We thank Professors T. R. Govindachari and T. J. Mabry for the spectral data and the Principal, J.I.P.M.E.R. for encouragement.

⁴ J. B. HARBORNE and N. W. SIMMONDS, *Biochemistry of Phenolic Compounds* (edited by J. B. HARBORNE), p. 77, Academic Press, London (1964).

⁵ S. S. SUBRAMANIAN, A. G. R. NAIR, E. RODRIGUEZ and T. J. MABRY, *Curr. Sci.* **41**, 202 (1972).

Phytochemistry, 1973, Vol. 12, pp. 221 to 222. Pergamon Press. Printed in England.

COMPOSITAE

CYNAROPICRIN: A SESQUITERPENE LACTONE FROM *CENTAUREA AMERICANA*

N. OHNO, H. HIRAI and H. YOSHIOKA

The Pesticide Department, Takarazuka Research Laboratory, Sumitomo Chemical Company,
Takarazuka, Hyogo, Japan

X. A. DOMÍNGUEZ

The Department of Chemistry, Instituto Technológico y de Estudios Superiores de Monterrey,
N.L., Mexico

and

T. J. MABRY

The Department of Botany, University of Texas, Austin, TX 78712, U.S.A.

(Received 6 September 1972. Accepted 1 October 1972)

Key Word Index—*Centaurea americana*; Compositae; sesquiterpene lactone; cynaropicrin; guaianolide.

A chloroform extract of *Centaurea americana* collected in Mexico yielded after chromatography a polar sesquiterpene lactone as major constituent. IR and NMR spectral properties of the lactone were very similar to those of cynaropicrin which was first isolated from *Cynara scolymus* L.¹ and whose spectral data were given by the Czechoslovakia group² and the structure has been recently revised to I³ with the described stereochemistry at C₃ and C₈ which were deduced by the Horeau's method and the empirical NMR rule.⁴

¹ M. SUCHY, V. HEROUT and F. SORM, *Coll. Czech. Chem. Commun.* **25**, 507 (1960); **25**, 2777 (1960).

² Z. SAMEK, M. HOLUB, B. DROZDZ, G. IOMMI, A. CORBELLÀ and P. GARIBOLDI, *Tetrahedron Letters* 4775 (1971).

³ A. CORBELLÀ, P. GARIBOLDI, G. IOMME, Z. SAMEK and M. HOLUB, *Chem. Commun.* 386 (1972).

⁴ H. YOSHIOKA, T. J. MABRY, M. A. IRWIN, T. A. GEISSMAN and Z. SAMEK, *Tetrahedron* **27**, 3317 (1971).